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1. Introduction.

Consider a circle of unit circumference and n points taken from
a uniform distribution on it. Let the successive arc-lengths or spacings
between these points be denoted by Sl. 52’ ceey Sn with

S1 + S2 + ... + Sn = 1 . Such spacings have been widely studied, see,
e.g., Holst (1979), (1980a), (1980b) and the references given therein.

Let S(n) be the largest spacing, i.e., S In various

M8X1<k<n “k

ways it can be proved that
-X
P(n S(n) - lnn<x) > exp(-e "),

when n + «© ; for an elementary proof see Holst (1980b), Theorem 3.1.

In Section 2 we will give a rigorous proof of the convergence of the
momentgenerating functions. This does not seem to have been done before.

Let each of the n points be the left endpoints, say, of arcs on

the circle, all of length a . It is easy to see that the whole circum-
ference is covered if and only if S(n) < a , and that the uncovered

part of the circumference, i.e., the vacancy, has length

n

vl (s, -a)

k=1 +

Exact formulas for the distribut{on and moments of Vn are given in
Siegel (1978). Results on the asymptotic behavior of Vn are obtained
in Siegel (1979a). Depending on how n *© and a * 0 , different

cases occur, For the case n * = a + 0 such that P(Vn'-O) * P, N

0 <p <1, it 18 proved in Section 3 that the momentgenerating function




of 2n Vn is converging to that of the noncentral chi-square with zero

degrees of freedom, i.e., a Poisson-mixture of chi-square distributions
with even degrees of freedom and a one point distribution in zero, c.f.
Siegel (1979b) for further aspects of this distribution. This is a
slight generalization of Siegel (1979a), Theorem 3.2, using quite
different methods. 1In Section 4 the case when n + «, a + 0 such that
P(Vn =0) >0 and 1lim inf na > 0 1is studied. The limiting distri-
bution of (n Vn-E(n Vn))/(Var(n Vn))16 is a standard normal. Also, the
momentgenerating functions converge in a neighborhood of zero implying
convergence of all moments. This extends results by Siegel (1979a),
who considered the special case na = A 1n(n/8) , where 0 < A <1
and B > 0 and proved convergence of moments and distributions. The
methods used below are quite different from Siegel's.

The problems discussed above can obviously also be formulated as
taking n - 1 points from a uniform distribution on the unit interval,
[0,1]. The endpoints correspond to one of random points on the circum

ference.

2. The Largest Spacing.
The exact distribution of S(n) can be found in many places, see,
e.g., Holst (1980b), Section 2, and the references given therein. There

the moments are also given and, e.g.,

n
1
E(n S(n)) = kzl Pl Inn+ vy +0Q1) ,




Tl
lim ( z X~ 1In n) =y ,

n»o \k=]

- AN T I R T

| is Euler's constant. Hence, n S(n) is of the order of magnitude 1ln n

when n + o , It is also well known that
P(n S(n) - 1lnn < x) > exp(-e %) ,

when n + @ , TFor an (almost) elementary proof of this see Holst (1980b),
Theorem 3.1. Barton and David (1956), page 86, considered convergence of
a certain generating function. Before stating a theorem on convergence
of the momentgenerating function of n S(n) - Inn we will recall some

facts about spacings.

Let Xl, x2, ey Xn be 1i.1.d. exponential random variables with mean

1, and let X(l), X(Z)’ ceey X(n) denote the corresponding order statistic.

Then the following representations hold

L(n Sl’ veey M Sn) = £(Xl, evey Xn

kzl e n)

and

£(n x(l), (n—l)(X(z)-x(l)), caey l(x(n) - x(n-l))) = -t(xno xn_lv'--yxl)

This is easily proved using simple properties of the Poisson process, or

see, e.g., Feller (1971), pages 19, 75-76.
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Theorem 2.1. Let Sl’ ey Sn be the spacings of n points taken
from the uniform distribution on the circumference of a unit circle and
set S(n) = maxlf-kin Sk « Then for t <1

E(exp(t(n S -1nn))) > TA -1¢t),

(n)

when n + ® , where the gamma function can be written

Q0

(L -t) = J et d(exp(-e ¥))

-Q0

From this Theorem we immediately have by the continuity theorem for

momentgenerating functions that:

Corollary 2.1. Let Y have the extreme value distribution

exp(-e-x) . Then

£(n S(n) - 1n n) hd £(Y) ’

and, for r >0,

E((nS, , - Inn)") » ECY") ,

(n)

when n + = ,

Before proving the Theorem we will obtain the following lemma which

also is of some independent interest, at least the method of deriving {t.

T -

P




Lemma 2.1. For t <1 and n> 2,

n+

E(exp(tn S(n))) = (21 n b e a7t

. Lm E(exp(t X(n) + 1u(X-1))) du

= n
where X(n) = mxlf_kin xk s, X Ek-l X.k/n , and xl, cves Xn are 1.1.d.

exponential random variables with mean 1 .

Proof. From the representation of order statistics given above, it

follows that

n n
sx, WX =g} x/x, I X/n] .
(n) <;-1 whhod A )

Thus

n
E(exp(t x(n) +iu X)) = 1 E(exp (X, (t/k+1u/n)))

k=1
n -1

- 0 (1-t/k-du/n)™",
k=1

which clearly is an integrable function of u for n > 2 . Using con-

ditional expectation we can write




E(exp(t X + iu X))

(n)

= J E(exp(t X(n) +iu X)X =x) . f_(x)dx
- X

= J_w eiux E(exp(t x(n))lx = x) - fi(x)dx

where f_ (x) 1is the density function of X , which is T(n,1/n)-distributed.
X

By the integrability of E(exp(t X(n) + iu X)) it follows by Fourier's

inversion formula that

E(exp(t x(n))l X=x) . f)_((x)

-]

= (2Tr)-1 J E(exp(t X(n) + iu X)) - e 1ux 44 .

-00

Thus by the representation of spacings we finally have
= . X =1
E(exp(tn S(n))) E(exp(t x(n))]x )

= (2n f_(l))-1 I E(exp(t X(n) + iu X)) - e-iu du
X -0

a0

e @27 2™ e Vnn! J E(exp(t X ) + fu(X - 1)))du ,

-00
prooving the assertion.

Proof of Theorem 2.1. From the lemma, the representation of order

statistics of the exponential distribution, and Stirling's formula, we have

.
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‘ gx,, s - L l,k)))

A (70 )
~ (2m) M E(exp((t/k + iu/n*) (X, - 1)))du

~o k=1
S n
= (Zﬂ)_gj exp(iu( I tf(k - t))/:#)
-0 k=1
n % %
I [exp(~iu/(n*(1 - t/kK)))/ (1 - 1u/(x°1 - t/k)))]du
k=1
n
T %A - ),
k=1

for t <1 . Now for fixed t <1, when n + o,

n
T (%@ - e/1)
k=1

el ( (x ) 1/k))> YEra - o
= Elexp|t - + e -t),
\ @ "L

where Yy 1s Euler's constant, c.f. Holst (1980b), Theorem 3.3. The

integrand in the integral above is dominated by

gn(u) = (1 +c¢c u2/n)-n/2

for some ¢ > 0 . Furthermore,

lim [ gn(u)du = I lim gn(u)du .

n-—»oo

-0 oo




For fixed t <1, when n » «

-y 0
exp(n =) t/kk-1) >,

and

n
I [exp(-iu/(n
k=1

1
2

(1 - t/k)))/ A - fu/(E(L-t/k)))]
> exp(—u2/2) .

Thus it follows from the extended form of Lebesgue's convergence theorem, y

see, e.g., Rao (1973), page 136, that

ii: E(exp(t(n S(n) ~ 1n n)))
-yt -5 [ —u2/2 t
= e 't (2m) 1[ e du e'® F(1-t) =T(1-1¢t) ,

proving the assertion of the theorem.

Remark. With small modifications in the proof above the convergence

of the momentgenerating function of any upper extreme value n S Inn

(n-3) ~
follows. Central order statistics are considered in Holst (1980b), Section 5.

3. Positive Coverage Probability.

In this section the coverage distribution, or equivalently the

vacancy, of random arcs is studied, when the complete coverage probability




stays strictly positive, With the notation of the introduction we can

write

n

p, = P(V =0) = P(kgl (s, -a), = >

= P < = - < -
(S(n) < a) =P(n S(n) Inn < na-1lnn)
From the results of the previous section we see that

pn+p’o<p<l<:'3

na - Inn > 1n In(1/p) ,

i.e., a complete coverage probability strictiy between O and 1 1is

equivalent to na - lnn = 0(1) . It also follows that
P, l1<>na-1lnn=>+o,

and,
P, 0<>na=-1nn>* -»,

Another way of stating the first two cases 1is

P(Vn=0)+e’8, 0<B<w,

The limit behavior of Vn is given by the following theorem. In the

next section the case P, 0 1is considered.




T — " v "

Theorem 3.1. Let n arcs, each of length a , be placed at random

on a unit circumference and Vn be the length of the uncovered part of

14

=5

the circumference. Assume that n + ©, a - 0 , such that P(Vn=0) r e,
0 <B<w ., Then, for t <1, when n >« ,

E(exp(tn Vn)) > e-8+8/(1~t)

In Siegel (1979b) the noncentral chi-square distribution with zero
degrees of freedom is discussed. A consequence of Theorem 3.1 is the
following corollary which is also proved in Siegel (1979a) by the method

of moments.

Corollary 3.1. Let Z be a random variable with a noncentral chi-

square distribution with zero degrees of freedom and non-centrality

parameter (3 . Then, when n + = ,

£@n V) > £@) ,
and,

E((2n v)") > ECZD) ,

for all r - 0 .

Before proving Theorem 3.1 the following lemma will be proved.

10




ey

Lemma 3.1. Let Xl, cees xn be 1.1.d. exponential random variables

with mean 1 . Then for t <1 and n > 2,

E(exp(tn V_)) = (21 2™ Byl

o] n
. I E(exp(t z ()(k - na)+ + ju(X - 1)))du .

k=1

Proof. By the independence between the X's and after some ele-

mentary calculation one obtains

E<exp(t kgl (X, - na), + {u )'())

[E(exp(t(x1 - na)+ + iu Xlln))]n

(1 - iu/n)™ [1 + t exp(-na(l - 1u/n))/(1 - t - 1u/n)]1",

which is integrable in u for n > 2 . Using the representation of

spacings with exponential random variables we have

x1)

The rest of the proof proceeds like that of Lemma 2.1.

n
£av) =g ) (X - na)
n k=1 xk +

Proof of Theorem 3.1. By the lemma above and Stirling's formula

we get

11
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E(exp(tn Vn)) ~ (211)-!é

. J (exp(—iu/nh)/(l - iu/nl“')]n

* [1 4+t exp(-na(l - iu/n%))/(l -t - iu/nlé)]n du .
As na > lnn we get for fixed t <1 uniformly in u that

(1 + t exp(-na(l - iu/n%))/(l -t - iu/n;é))ln

%‘)n <K, <.

< (1+K1|t|/n|1-t—iu/n 9

As

* L
lim I [1 - 1u/n?|™ du
-00

n-»<e

L. oo 2

= J lim [1 - 1u/n?™ du = J /2 gy
s o) n—.@ - OO

- om*,

and pointwise

(1+¢te™ . explu na/nD/(1 - ¢ - 1u/nH]"

+ exp(Bt/(1 - t))




it follows by the extended form of Lebesgue's convergence theorem that

E(exp(tn V )) + (2my~

: J exp(-u>/2) * exp(Bt/(1 - t))du

- B B/(-0)

for t <1 , which proves the theoren.

Remark. The function

®

e BB Ly Bgkpyy -k

k=0

is the momentgenerating function of Z?-l xj » Where N, xl, Xz, evey
are independent random variables, N Poisson with mean B8 and the X's
exponential with mean 1. One can interpret N as the number of gaps, i.e.,
the number of regions on the circumference which are not covered by any
of the arcs. This can be proved in a similar way as Theorem 3.1 using
the indicator function 1I(. > na) {instead of (. - na)+ . Clearly
P(N =0) = e-B is the probability of complete coverage. It is in-~
tuitively clear that the lengths of the gaps (after sacaling with n)
should be independent exponential random variables. Because an arbitrary
spacing n Sk converges in distribution to an exponential with mean 1

and depending on the lack of memory of the exponential distribution the

excess (of any) over na has also in the limit an exponential distribution

- j,:J




with mean 1. Theorem 3.1 is thus very reasonable. One can also say
that the dependence structure between the spacings disappears in the
case na > ln n . Actually the dependence is asymptotically negligible
as soon as na * +° which will be apparent from the results of the next

section.

4. Zero Coverage Probability.

It is pointed out in the previous section that
P, = P(Vn =0) »0<>na-1lnn+ -0,

Two cases are of interest, namely, na -+ +° , but na - lnn > - ,
and na *a, 0 <a <« ., The cagse na * 0 means that the maximum covered
length, na , is tending to zero and, therefore, Vn + 1. Let us in-

troduce
0: = 2n(e M@ - e-2na(1 + na + (na)2/2))

In the case na > +© ywe have Oi . 2ne ,» and On +o if and only

if na~-lnn~> ->»,

Theorem 4.1. Suppose that n + ® and a + 0 1in such a way that

On + 4o , and 1im inf na > 0 . Then, when n + « |

tz /2

e e 1

E(exp(t(n Vn-n e

for all sufficiently small ||




Proof. As in the proof of Theorem 3.1, we find that
-na
E(exp(t(n V - ne "")/o))
en™ [ g h (w0
~ » gn u n u,t)du ,
where

8, (W) = (exp(-1u/n?)/(L - tu/n?)"

+ exp(—u2/2) y 0 > @,
and,

h (u,t) = exp(-tn e'“‘/on)

(14 (¢ exp(-na(l - tu/n™)/0 )/ (1 - t/o_ - fu/a)"

For fixed t and u one finds after some calculation that

sn(u) hn(U.t)

= exp(-(u ~ it e " (na + l)nglon)ZIZ + t2/2 + 0o(1)) .

Thus one would expect

15
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-na
E(exp(t(n V_-n e )/on)

1 w 2
(2m)”* f exp(-(u + 0(1))2/2 + 0(1))du + &F /2 _ /2

The problem to justify these approximations is not trivial because o(1)
is not uniform in wu .

We will consider the integral above over three different regions,

namely, I1 = {u; ju| < nk} y I = {u; nk %}

1
13 = {u;8 n° < {ul} where & > 0 is a "sufficiently" small number.

< lul <8n*, and

The idea is the same as that of proving local limit theorems using
characteristic functions, see, e.g., Feller (1971), page 516.

In the interval 11 one finds by expansion that uniformly in wu

[h (u,e)] < K <=,

for some constant Kl . Thus

n%
lim lim sup J gn(u) hn(u,t)du
Aro A
L4
n 2, .-n/2
< lim lim sup J (1 + u"/n) K, du=0.
Ao e A

Using this it follows by the expansion above that

lim (Zw)-% I gn(u) hn(u.t)du
1

n*m® 1

o 2 2
- (Zﬂ)-% J exp(-u2/2)du . et 2 et /2 .

-1

16




b -

In the region I2 with & > 0 fixed sufficiently small one finds

in a similar way that |

|hn(u.t)| <K, exp(K2|t| n%)

for some constant K2 < o , Thus

'J sn(U) hn(U.t)du
I

I 1+ uzln)-n/2 K, exp(Kzltl n%)du %
I H

2

1A

pesem——r———

K3 n;5 exp(—KA n%) +0, n+o,

ia

o o

for some constants 0 < K3, Kb <o ., and |t| sufficiently small.

Finally for 13 we find for some constants 0 < KS’ K6’ K, <=

that

|f1 8n(u) hn(u,t)du f
k]

- 1
n/2 exp(K6 n?)

| A

KS J (1 + uz/l'l)-1 du(l + 62)
Gn%

A

K, n? (1 + 62)"/2 exp (K, n?) +0, now,

Combining the results above gives

(Zw)-s I B, (u) h (u,t)du * e ,

l
!

17




proving the assertion of the theorem.
In Siegel (1978) formulas for moments of the vacancy are obtained.
Either by using these or by direct calculation it is not hard to show

that

E(aV)-ne ™ =0(),
and,

Var(n Vn)/on -1,

when n > o, a - 0 , such that on + 4o and lim inf na > 0 . Thus the

following corollary follows.

Corollary 4.1. If oL +° and 1im inf na > 0 , then

S Vv - E(n V))/(Var(n ¥ )9

~ N(0,1) ,

and all moments and the momentgenerating function converge to those of

the standard normal distribution.

18
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